Difference between hazardous and radioactive waste
Answers
Explanation:
A number of questions concerning the response of concrete gravity dams to earthquakes, motivated by the structural damage caused to Koyna Dam, which has an unconventional cross section, by the December 1967 Koyna earthquake, are considered in this work. The study is not restricted to the earthquake experience at Koyna Dam, but includes consideration of a dam with a typical section and another earthquake motion having similar intensity but different peak acceleration and frequency characteristics compared to the Koyna ground motion. The earthquake response in a number of cases is analysed by the finite element method and results are presented. These results lead to a number of conclusions. Significant tensile stresses must have developed in Koyna Dam during the Koyna earthquake and similar stresses would have developed even in typical gravity dam sections. The Koyna ground motion is relatively more severe, compared to California earthquakes of similar intensity, on concrete gravity dams. The extra concrete mass near the crest of a gravity dam to support the roadway, etc. is responsible for causing a significant part of the critical tensile stresses; attention should therefore be given to developing lightweight supporting systems.