difference between measured value and true value is called
Answers
Answered by
1
All measurements of physical quantities are subject to uncertainties in the measurements. Variability in the results of repeated measurements arises because variables that can affect the measurement result are impossible to hold constant. Even if the "circumstances," could be precisely controlled, the result would still have an error associated with it. This is because the scale was manufactured with a certain level of quality, it is often difficult to read the scale perfectly, fractional estimations between scale marking may be made and etc. Of course, steps can be taken to limit the amount of uncertainty but it is always there.
In order to interpret data correctly and draw valid conclusions the uncertainty must be indicated and dealt with properly. For the result of a measurement to have clear meaning, the value cannot consist of the measured value alone. An indication of how precise and accurate the result is must also be included. Thus, the result of any physical measurement has two essential components: (1) A numerical value (in a specified system of units) giving the best estimate possible of the quantity measured, and (2) the degree of uncertainty associated with this estimated value. Uncertainty is a parameter characterizing the range of values within which the value of the measurand can be said to lie within a specified level of confidence. For example, a measurement of the width of a table might yield a result such as 95.3 +/- 0.1 cm. This result is basically communicating that the person making the measurement believe the value to be closest to 95.3cm but it could have been 95.2 or 95.4cm. The uncertainty is a quantitative indication of the quality of the result. It gives an answer to the question, "how well does the result represent the value of the quantity being measured?"
I hope this is enough For you
In order to interpret data correctly and draw valid conclusions the uncertainty must be indicated and dealt with properly. For the result of a measurement to have clear meaning, the value cannot consist of the measured value alone. An indication of how precise and accurate the result is must also be included. Thus, the result of any physical measurement has two essential components: (1) A numerical value (in a specified system of units) giving the best estimate possible of the quantity measured, and (2) the degree of uncertainty associated with this estimated value. Uncertainty is a parameter characterizing the range of values within which the value of the measurand can be said to lie within a specified level of confidence. For example, a measurement of the width of a table might yield a result such as 95.3 +/- 0.1 cm. This result is basically communicating that the person making the measurement believe the value to be closest to 95.3cm but it could have been 95.2 or 95.4cm. The uncertainty is a quantitative indication of the quality of the result. It gives an answer to the question, "how well does the result represent the value of the quantity being measured?"
I hope this is enough For you
Similar questions