Math, asked by sky1000000000, 8 months ago

difference between the Cl. and S.l. on Rs 9500 for 2 years is Rs 95 at the same rate of interest per annum. Find the rate of interest
per annum​

Answers

Answered by MaIeficent
29

Step-by-step explanation:

Given:-

  • Difference between C.I and S.I is Rs.95

  • Principal (P) = Rs. 9500

  • Time (T) = 2 years

To Find:-

  • The rate of interest per annum.

Solution:-

\sf Let \: the rate \: of \: interest \: be \: r\%

\sf Simple\:  Interest \: (SI) = \dfrac{PTR}{100}

Here:-

• P = Rs. 9500 , T = 2 years , R = r

\sf \implies SI =\dfrac{ 9500 \times 2 \times r}{100}

\sf \implies SI = Rs. 190r

\sf CI = Amount - Principal

\sf \implies CI = P\times \bigg( 1 +\dfrac{r}{100}\bigg)^{n}  - P

• P = Rs. 9500 , n = 2 years , R = r

\sf \implies CI = P\times \bigg( 1 +\dfrac{r}{100}\bigg)^{n}  - P

\sf \implies CI = 9500 \times \bigg( 1 +\dfrac{r}{100}\bigg)^{2}  - 9500

\sf Given,\: CI  - SI = Rs.95

\sf \implies \bigg[ 9500  \bigg( 1 +\dfrac{r}{100}\bigg)^{2}  - 9500\bigg]-190r = 95

\sf \implies \bigg[ 9500 \bigg( 1 +\dfrac{r}{100}\bigg)^{2}  - 9500\bigg]-190r = 95

\sf \implies \bigg[ 9500 \bigg( 1 +\dfrac{ {r}^{2} }{10000} +  \dfrac{2r}{100} \bigg)  - 9500\bigg]-190r = 95

\sf \implies \bigg[   9500+\dfrac{ {9500r}^{2} }{10000} +  \dfrac{9500(2r)}{100}  -  9500\bigg]-190r = 95

\sf \implies    9500+\dfrac{ {95r}^{2} }{100} +  {190r}  -  9500-190r = 95

\sf \implies   \dfrac{ {95r}^{2} }{100}  = 95

\sf \implies  {r}^{2}  = 95 \times  \dfrac{100}{95}

\sf \implies  {r}^{2}  = 100

\sf \implies  {r}  = \sqrt{100}  = 10

\underline{\boxed{\purple{\rm \therefore Rate\: of \: interest = 10\%}}}

Similar questions