Math, asked by Anonymous, 1 day ago

differenciate (2x + (1/x))^2

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\  \frac{d}{dx} (2x +  \frac{1}{x} ) {}^{2}  \\  \\ according \: to \: chain \: rule \\  \frac{d}{dx} (u {}^{n} ) = n.u {}^{n - 1} . \frac{d}{dx} (u) \\  \\  = 2.(2x +  \frac{1}{x} ) {}^{2 - 1} . \frac{d}{dx} (2x +  \frac{1}{x} ) \\  \\we \: know \: that \\  \frac{d}{dx}(x {}^{n} ) = n.x {}^{n - 1}  \\  \\    = 2.(2x +  \frac{1}{x} ).(2 -  \frac{1}{x {}^{2} } )

Answered by tuisunny87
0

Answer:

\begin{gathered}to \: find : \\ \frac{d}{dx} (2x + \frac{1}{x} ) {}^{2} \\ \\ according \: to \: chain \: rule \\ \frac{d}{dx} (u {}^{n} ) = n.u {}^{n - 1} . \frac{d}{dx} (u) \\ \\ = 2.(2x + \frac{1}{x} ) {}^{2 - 1} . \frac{d}{dx} (2x + \frac{1}{x} ) \\ \\we \: know \: that \\ \frac{d}{dx}(x {}^{n} ) = n.x {}^{n - 1} \\ \\ = 2.(2x + \frac{1}{x} ).(2 - \frac{1}{x {}^{2} } )\end{gathered}

tofind:

dx

d

(2x+

x

1

)

2

accordingtochainrule

dx

d

(u

n

)=n.u

n−1

.

dx

d

(u)

=2.(2x+

x

1

)

2−1

.

dx

d

(2x+

x

1

)

weknowthat

dx

d

(x

n

)=n.x

n−1

=2.(2x+

x

1

).(2−

x

2

1

)

Hope it helps u mark me brainlest

Similar questions