Math, asked by rishusingh39, 8 months ago

differenciate w.r.t to x  y=\dfrac{2}{x}+\frac{x}{2} Ans:-2x^{-2}+\frac{1}{2}

Answers

Answered by Anonymous
36

\huge\bf{\red{\overbrace{\underbrace{\purple{Given:}}}}}

y=\dfrac{2}{x}+\frac{x}{2}

\huge\bf{\red{\overbrace{\underbrace{\purple{To\:\:Find:}}}}}

★The differentiation of y w. r. t. x.

\huge\bf{\red {\overbrace{\underbrace{\purple{Answer:}}}}}

We have,

y=\dfrac{2}{x}+\frac{x}{2}

So,

\implies \dfrac{dy}{dx} =\dfrac{d[\dfrac{2}{x}+\dfrac{x}{2}]}{dx}

\implies \dfrac{dy}{dx}=\dfrac{d[2x^{-1}+\frac{1}{2}(x) ]}{dx}

\implies \dfrac{dy}{dx}=\dfrac{d[2x^{-1}]}{dx}+\dfrac{1}{2}\dfrac{d[x]}{dx}

\implies \dfrac{dy}{dx}=2\frac{d[x^{-1}]}{dx}+\dfrac{1}{2}\times 1

\large\orange{\boxed{\bf{\purple{y=a^{n}, \dfrac{dy}{dx}=na^{n-1}}}}}

\implies \dfrac{dy}{dx}=-2x^{-2}+\dfrac{1}{2}

\large\green{\boxed{\red{\sf{.\degree.\dfrac{dy}{dx}=-2x^{-2}+\dfrac{1}{2}}}}}

Answered by Anonymous
4

 \frac{dy}{dx}  =  { - 2x}^{ - 2}  +  \frac{1}{2}

Explanation:

Given,

y =  \frac{2}{x}  +  \frac{x}{2}

 \frac{dy}{dx}  =  \frac{d{ \frac{2}{x} +  \frac{x}{2}}  }{dx}

 \frac{dy}{dx}  =  \frac{d( {2x}^{ - 1 +  \frac{1}{2}x) } }{dx}

 \frac{dy}{dx}  =  \frac{d( {2x}^{ - 1)} }{dx}  +  \frac{1}{2}  \frac{d(x)}{dx}

 \frac{dy}{dx}  = 2 \frac{d( {x}^{ - 1)} }{dx}  +  \frac{1}{2}  \times 1

y =  {a}^{n}

  \frac{dy}{dx}  =  {na}^{n - 1}

so,

The answer is

 \frac{dy}{dx}  =  { - 2x}^{ - 2}  +  \frac{1}{2}

Similar questions