Math, asked by afsalrahman0406, 25 days ago

differenriate x+3 / x²+4x+2​

Answers

Answered by saleemali89200
0

Answer:

x

x { }^{2}  + 4x + 2 \\   - x + 3 \\ans \:   3x - 1

thankyou

I hope it's help you

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:\dfrac{x + 3}{ {x}^{2}  + 4x + 2}

Let we assume that,

\rm :\longmapsto\:y = \dfrac{x + 3}{ {x}^{2}  + 4x + 2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \dfrac{x + 3}{ {x}^{2}  + 4x + 2}

We know,

\boxed{\tt{ \dfrac{d}{dx} \frac{u}{v} \:  =  \:  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }  \: }}

So, using this Quotient Rule, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{( {x}^{2}  + 4x + 2)\dfrac{d}{dx}(x + 3) - (x + 3)\dfrac{d}{dx}( {x}^{2} + 4x + 2)}{ {( {x}^{2}  + 4x + 2)}^{2} }

We know,

\boxed{\tt{ \dfrac{d}{dx}x = 1}} \:  \:  \:  \:  \:  \: \boxed{\tt{ \dfrac{d}{dx}k = 0}} \:  \:  \:  \:  \:  \: \boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}

So, using these, we get

\rm \:  =  \: \dfrac{( {x}^{2} + 4x + 2)(1 + 0) - (x + 3)(2x + 4)}{ {( {x}^{2} + 4x + 2)}^{2} }

\rm \:  =  \: \dfrac{{x}^{2} + 4x + 2- (x + 3)(2x + 4)}{ {( {x}^{2} + 4x + 2)}^{2} }

\rm \:  =  \: \dfrac{{x}^{2} + 4x + 2- (2 {x}^{2}  + 4x + 6x + 12)}{ {( {x}^{2} + 4x + 2)}^{2} }

\rm \:  =  \: \dfrac{{x}^{2} + 4x + 2- (2 {x}^{2}  + 10x + 12)}{ {( {x}^{2} + 4x + 2)}^{2} }

\rm \:  =  \: \dfrac{{x}^{2} + 4x + 2- 2 {x}^{2} - 10x - 12}{ {( {x}^{2} + 4x + 2)}^{2} }

\rm \:  =  \: \dfrac{-  {x}^{2} - 6x - 10}{ {( {x}^{2} + 4x + 2)}^{2} }

\rm \:  =  \: -  \:  \dfrac{{x}^{2} + 6x + 10}{ {( {x}^{2} + 4x + 2)}^{2} }

Hence,

\boxed{\tt{ \bf \: \dfrac{dy}{dx} =  \: -  \:  \dfrac{{x}^{2} + 6x + 10}{ {( {x}^{2} + 4x + 2)}^{2} }  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Learn

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions