Math, asked by amanrcky3338, 1 year ago

Differentate log(1+theta) with respect to sin inverse theta

Answers

Answered by viralchitlangia
8

Answer:

 \frac{ \sqrt{1 -  { theta}^{2} } }{(1 + theta) ln(10) }

Attachments:
Answered by lublana
10

\frac{d(log(1+\theta)}{dsin^{-1}\theta}=\frac{\sqrt{1-\theta^2}}{1+\theta}

Step-by-step explanation:

Let t=sin^{-1}\theta

sint=\theta

y=log(1+\theta)=log(1+sint)

Differentiate w.r.t t

\frac{dy}{dt}=\frac{d(log(1+sint)}{dt}

\frac{dy}{dt}=\frac{1}{1+sint}(cost)

Using the  formula

\frac{d(logx)}{dx}=\frac{1}{x}

\frac{d(sinx)}{dx}=cosx

\frac{dy}{dt}=\frac{\sqrt{1-sin^2t}}{1+sint}=\frac{\sqrt{1-\theta^2}}{1+\theta}

Using the formula

cost=\sqrt{1-sin^2t}

\frac{d(log(1+\theta)}{dsin^{-1}\theta}=\frac{\sqrt{1-\theta^2}}{1+\theta}

#Learn more:

https://brainly.in/question/9551412

Similar questions