Math, asked by sarthakchawla656, 10 months ago

Differentciation with chain rule: log(sin x/1+cos x) ​

Answers

Answered by DrNykterstein
0

 </p><p></p><p>\sf \rightarrow \quad  \frac{d}{dx}  \bigg(log \:( \frac{sin \: x}{1 + cos \: x}  )\bigg)</p><p> \\  \\ \sf \rightarrow \quad  \frac{d}{dx}  \bigg \{  \frac{ln  \big(   \frac{sin \: x}{ 1 + cos \: x}  \big)}{ln \: 10}   \bigg \} \\  \\ \sf \rightarrow \quad  \frac{1}{ln \: 10}  \bigg\{  \frac{d}{dx} \bigg(ln \:  \frac{sin \: x}{1 + cos \: x}  \bigg)  \bigg \} \\  \\ \sf \rightarrow \quad  \frac{1}{ln \: 10}  \bigg \{  \frac{d \bigg(ln \:  \frac{sin \: x}{1 + cos \: x}  \bigg)}{d  \frac{sin \: x}{1 + cos \: x} }   \cdot  \frac{d \big( \frac{sin \: x}{1 + cos \: x} \big)}{dx}  \bigg \} \\  \\  \sf \rightarrow \quad  \frac{1}{ln \: 10}  \cdot  \frac{1 + cos \: x}{sin \: x}  \cdot  \bigg \{  \frac{ \frac{d(sin \: x)}{dx} \cdot(1 + cos \: x) -  \frac{d(1 + cos \: x)}{dx} \cdot sin \: x  }{ {(1 + cos \: x)}^{2} }   \bigg \} \\  \\  \sf \rightarrow \quad  \frac{1}{ln \: 10}  \cdot  \frac{1 + cos \: x}{sin \: x}  \bigg(  \frac{ cos \: x(1 + cos \: x) - ( - sin \: x \cdot sin \: x) }{ {(1 + cos \: x)}^{2} } \bigg) \\  \\  \sf \rightarrow \quad  \frac{1}{ln \: 10}  \cdot  \frac{1 + cos \: x}{sin \: x}  \bigg( \frac{cos \: x \:  +  {cos}^{2} \: x +  {sin}^{2}   \: x}{ {(1 + cos \: x)}^{2} }  \bigg) \\  \\  \sf \rightarrow \quad  \frac{1}{ln \: 10}  \cdot  \frac{ \cancel{1 + cos \: x}}{sin \: x}  \cdot  \frac{ \cancel{1 + cos \: x}}{ \cancel{(1 + cos \: x)} \cancel{(1 + cos \: x)} }  \\  \\ \sf \rightarrow \quad  \frac{1}{ln \: 10}  \cdot  \frac{1}{sin \: x}  \\  \\ \sf \rightarrow \quad  \frac{cosec \: x}{ln \: 10} </p><p>

Similar questions