DIFFERENTIAL CALCULUS
If y = x sin^-1 x / (√1-x^2) ,prove that (1-x^2)dy/dx =x + y/x
(with steps)
Answers
(1 - x²)dy/dx = x + y/x if y = x sin⁻¹ x / (√1-x²)
Step-by-step explanation:
y = x sin⁻¹ x / (√1-x²)
Let say x = Sinα
=> y = Sinα * α /(√1-Sin²α)
=> y = Sinα * α /(√Cos²α)
=> y = Sinα * α /Cosα
=> y = α tanα
=> dy/dα = tanα + α(sec²α)
=> dy/dα = tanα + y(sec²α)/tanα
=> dy/dα = (tan²α + y(tan²α + 1))/tanα
x = Sinα
=> dx/dα = Cosα
=> (dy/dα)/(dx/dα) = (tan²α + y(tan²α + 1))/(tanα(Cosα))
=> dy/dx = (tan²α + y(tan²α + 1))/(Sinα)
x = Sinα
=> Cosα = √1 - x²
tanα = x/√1 - x²
tan²α = x²/(1 - x²)
dy/dx = (x²/(1 - x² ) + y( x²/(1 - x²) + 1) )/x
dy/dx = (x²/(1 - x² ) + y( (x² + 1 - x²)/(1 - x²) )/x
dy/dx = (x²/(1 - x² ) + y/(1 - x²) )/x
dy/dx = (x² + y/(1 - x²) )/x
dy/dx = (x² + y )/(1 - x²)x
(1 - x²)dy/dx = (x² + y )/x
(1 - x²)dy/dx = x + y/x
QED
Proved
Learn more:
Differentiate the function w.r.t.x: [tex] m rac{xtan x}{sec x+tan x ...
https://brainly.in/question/7855218
prove that differentiation of tanx is sec2x - Brainly.in
https://brainly.in/question/2909487