Math, asked by sakshijuly11, 10 months ago

Differential equation dy/dx= 3e^2x +4e^4x / e^x +e^-x

Answers

Answered by RRaaaaju
0

Answer:

this may be the answer.

Attachments:
Answered by Tan201
0

Answer:

y = \frac{4e^{3x}}{3}  - e^x + tan^{-1}e^x + C

Step-by-step explanation:

Given \frac{dy}{dx} =\frac{3e^{2x}  + 4e^{4x}}{e^{x} + e^{-x}} → (1)

Let t=e^x → (2)

dt = e^x dx

\frac{dt}{e^x} = dx

\frac{dt}{t}  = dx → (3)

Using (2) and (3) in (1) we get

dy = \frac{3t^2+ 4t^4}{t + \frac{1}{t} } \frac{dt}{t}

dy = \frac{3t^2+ 4t^4}{t^2 +1} dt

dy = (4t^2 - \frac{t^2}{t^2+1})  dt

dy = (4t^2 - \frac{t^2 +1 - 1}{t^2+1}) dt

dy = (4t^2 - (1 - \frac{1}{t^2+1})) dt

dy = (4t^2 - 1 + \frac{1}{t^2+1} ) dt

Integrating both sides we get,

\int dy  = \int {(4t^2 - 1 + \frac{1}{t^2+1} }) \, dt

y = \frac{4t^3}{3}  - t + tan^{-1}t + C

Using (2) in the above equation, we get,

y = \frac{4e^{3x}}{3}  - e^x + tan^{-1}e^x + C

Similar questions