Math, asked by arundhutiSPHS7901, 24 days ago

Differential equations of (4y+X)Dy/DX,=3x-y

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(4y  + x) \frac{dy}{dx}  = 3x - y \\

 \implies\frac{dy}{dx}  =  \frac{3x - y }{4y + x}\\

Let \: y = vx  \\  \implies \:  \frac{dy}{dx}  = v + x \frac{dv}{dx}

So,

 \implies \: v + x\frac{dv}{dx}  =  \frac{3x - vx }{4vx + x}\\

 \implies \: v + x\frac{dv}{dx}  =  \frac{x(3 - v)}{x(4v + 1)}\\

 \implies \: v + x\frac{dv}{dx}  =  \frac{(3 - v)}{(4v + 1)}\\

 \implies \: x\frac{dv}{dx}  =  \frac{(3 - v)}{(4v + 1)} - v\\

 \implies \: x\frac{dv}{dx}  =  \frac{(3 - v) - v(4v + 1)}{(4v + 1)} \\

 \implies \: x\frac{dv}{dx}  =  \frac{3 - v - 4v^{2}   - v}{4v + 1} \\

 \implies \: x\frac{dv}{dx}  =  \frac{3 - 2v - 4v^{2}   }{4v + 1} \\

 \implies \frac{(4v + 1)dv}{3 - 2v - 4 {v}^{2} }  =  \frac{dx}{x}  \\

 \implies  \int\frac{(4v + 1)dv}{3 - 2v - 4 {v}^{2} }  =   \int\frac{dx}{x}  \\

 \implies    - \frac{1}{2} \int\frac{ - 2(4v + 1)dv}{3 - 2v - 4 {v}^{2} }  =   \int\frac{dx}{x}  \\

 \implies \:  -  \frac{1}{2}  ln |3 - 2v - 4 {v}^{2}  |  =  ln |x|  +  ln(c) \\

Here, ln(c) is a integration constant

 \implies \:  -  \frac{1}{2}  ln |3 - 2 \frac{y}{x} - 4 { (\frac{y}{x} )}^{2}  |  =  ln |x|  +  ln(c) \\

 \implies \:  -  \frac{1}{2}  ln |3 - 2 \frac{y}{x} - \frac{4y ^{2} }{x^{2} }  |  =  ln |x|  +  ln(c) \\

 \implies \:  -  \frac{1}{2}  ln |3  {x}^{2} - 2yx -4y ^{2}   |  +  \frac{1}{2} ln |x^{2} |    =  ln |x|  +  ln(c) \\

 \implies \:  -  \frac{1}{2}  ln |3  {x}^{2} - 2yx -4y ^{2}   |  +  ln |x |    =  ln |x|  +  ln(c) \\

 \implies \:  -   ln \sqrt{3  {x}^{2} - 2yx -4y ^{2}  }    =     ln(c) \\

 \implies \:  ln(c) +  ln \sqrt{3  {x}^{2} - 2yx -4y ^{2}  }    =     0 \\

 \implies \:   ln  \{c\sqrt{3  {x}^{2} - 2yx -4y ^{2}  }   \}  =     0 \\

 \implies \: c\sqrt{3  {x}^{2} - 2yx -4y ^{2}  }    =     1 \\

 \implies \: \sqrt{3  {x}^{2} - 2yx -4y ^{2}  }    =      \frac{1}{c} \\

 \implies \:3  {x}^{2} - 2yx -4y ^{2}    =      \frac{1}{ {c}^{2} } \\

 \implies \:3  {x}^{2} - 2yx -4y ^{2}    =   C  \\

Here C= 1/c²

Similar questions