Math, asked by Anonymous, 1 year ago

DIFFERENTIAL EQUATIONS.

Solve with explanation. ​

Attachments:

Answers

Answered by Anonymous
3

Answer:

Step-by-step explanation:

dy/dx=cos(x+y)+sin(x+y).

Put x+y=t

Then, differentiate w.r.t. x,

1+dy/dx=dt/dx

Now,

dt/dx−1=cos(t)+sin(t)

dt/1+sin(t)+cos(t)=dx

Then integrate both sides,

∫dt/1+sin(t)+cos(t)=∫dx

1+sin(t)+cos(t)=2.cos^{2}^{ \frac{t}{2}} (1+tan^{\frac{t}{2} } )

\frac{dt}{2.cos^{2}^{ \frac{t}{2}} (1+tan^{\frac{t}{2} } )}

\frac{sec^{2} \frac{1}{2}dt }{2(1+tan\frac{t}{2}) }

=log(tant/2+1)

log(tan(t/2)+1)=x+c

log(tan(x+y/2)+1)=x+c  

Hope it helped you!

Answered by Anonymous
3

Question :-

  \frac{dy}{dx}  =  \cos(x + y)  +  \sin(x + y)  \\

Answer:-

 \red{\boxed{ log \bigg( \tan( \frac{x + y}{2}  \bigg)  + 1)  = x + c} \: }

Explanation :-

According to the question,

assume , (x+ y ) = z

Differentiate with respect to "x"

 1 +  \frac{dy}{dx}  =  \frac{dz}{dx}  \\  \\  \frac{dy}{dx}  =  \frac{dz}{dx}  - 1 \\  \\  \sin(z)  +  \cos( z ) =  \frac{dz}{dx}   - 1 \\  \\ dx =  \frac{dz}{1 +  \sin(z) +  \cos(z)  }  \\  \\ \:  \red{ \bf{integration \: on \: both \: sides}} \\  \\  \int \: dx =  \int \: \frac{dz}{1 +  \sin(z) +  \cos(z)  } \:  \\  \\   \because \: 1 +  \sin(z)  +  \cos(z)  = 2 { \cos}^{2}  \frac{z}{2}  \bigg(1 +  \tan( \frac{z}{2} )  \bigg) \\  \\  \therefore \:  \int \:  \frac{dt}{ \: 2 { \cos}^{2}  \frac{z}{2}  \bigg(1 +  \tan( \frac{z}{2} )  \bigg) \:  \: }  = x + c \\  \\  \int \:   \frac{ { \sec }^{2}  \frac{z}{2} \: dz }{2 \bigg(1 +  \tan( \frac{z}{2} ) \bigg) }  = x + c \\  \\  log \bigg( \tan( \frac{z}{2} ) + 1  \bigg) = x + c \\  \\  \boxed{ log \bigg( \tan( \frac{x + y}{2}  \bigg)  + 1)  = x + c}

Hope it helps you.

Similar questions