Math, asked by rinamohite0505, 7 months ago

differential the following w.r.t.x y=√sinx3​

Answers

Answered by Anonymous
10

Answer:

 \sf \frac{d}{dx}  ( \sqrt{sin  \: x {}^{3} } ) =  \frac{3}{2} x {}^{2}  \:  \frac{cos \: x {}^{3} }{ \sqrt{sin \: x {}^{3} } }

Step-by-step explanation:

 \sf \: Let's \: \:  \red{ y = \sqrt{sin \: x {}^{3} }  } \\  \\ \sf differentiate \: with \: respect \: x. \\  \\  \leadsto  \sf\frac{d}{dx} (y) =  \frac{d}{dx} ( \sqrt{sin \: x {}^{3} } ) \\  \\  \leadsto  \sf \: \frac{dy}{dx}  =  \frac{1}{ \sqrt[2]{sin \: x {}^{3} } }  \: . \:  \frac{d}{dx} (sin \: x {}^{3} ) \\  \\  \leadsto  \sf \: \frac{dy}{dx}  =  \frac{1}{ \sqrt[2]{sin \: x {}^{3} } }  \: (cos \: x {}^{3} ) \:  \frac{d}{dx} (x {}^{3} ) \\  \\  \leadsto  \sf \: \frac{dy}{dx} =  \frac{1}{ \sqrt[2]{sin \: x {}^{3} } }  \: (cos \: x {}^{3} ) \: (3x {}^{2} ) \\  \\  \leadsto  \sf \: \frac{dy}{dx}  =  \frac{3}{2} x {}^{2}  \:  { \frac{cos \: x {}^{3} }{ \sqrt{sin  \: x {}^{3} } } } \\  \\  \leadsto  \boxed{  \pink{\sf \: \frac{d}{dx}  ( \sqrt{sin  \: x {}^{3} } ) =  \frac{3}{2} x {}^{2}  \:  \frac{cos \: x {}^{3} }{ \sqrt{sin \: x {}^{3} } } }} \green \bigstar

Similar questions