differentiat 1/x with respect to x from first principle
Answers
The first principle of differentation states that the first derivative of a function f(x) is given by,
Here,
Then,
This is the first derivative of 1/x with respect to x, derived using first principle.
Step-by-step explanation:
The first principle of differentation states that the first derivative of a function f(x) is given by,
\displaystyle\small\text{$\longrightarrow f'(x)=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}$}⟶f
′
(x)=lim
h→0
h
f(x+h)−f(x)
Here,
\displaystyle\small\text{$f(x)=\dfrac{1}{x}$}f(x)=
x
1
Then,
\displaystyle\small\text{$\longrightarrow f'(x)=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}$}⟶f
′
(x)=lim
h→0
h
f(x+h)−f(x)
\displaystyle\small\text{$\longrightarrow f'(x)=\lim_{h\to0}\dfrac{\left(\dfrac{1}{x+h}-\dfrac{1}{x}\right)}{h}$}⟶f
′
(x)=lim
h→0
h
(
x+h
1
−
x
1
)
\displaystyle\small\text{$\longrightarrow f'(x)=\lim_{h\to0}\dfrac{\left(\dfrac{x-(x+h)}{x(x+h)}\right)}{h}$}⟶f
′
(x)=lim
h→0
h
(
x(x+h)
x−(x+h)
)
\displaystyle\small\text{$\longrightarrow f'(x)=\lim_{h\to0}\dfrac{-h}{hx(x+h)}$}⟶f
′
(x)=lim
h→0
hx(x+h)
−h
\displaystyle\small\text{$\longrightarrow f'(x)=-\lim_{h\to0}\dfrac{1}{x(x+h)}$}⟶f
′
(x)=−lim
h→0
x(x+h)
1
\displaystyle\small\text{$\longrightarrow f'(x)=-\dfrac{1}{x(x+0)}$}⟶f
′
(x)=−
x(x+0)
1
\displaystyle\small\text{$\longrightarrow\underline{\underline{f'(x)=-\dfrac{1}{x^2}}}$}⟶
f
′
(x)=−
x
2
1
This is the first derivative of 1/x with respect to x, derived using first principle.