Math, asked by PragyaTbia, 1 year ago

Differentiat w. r. t. x : {x^{x}}^{3}+(x^{3})^{x}

Answers

Answered by MaheswariS
0

Answer:

\bf\frac{dy}{dx}=x^{x^3+2}[1+3\:logx]+3(x^3)^x[1+logx]

Step-by-step explanation:

\text{Let }y=x^{x^3}+(x^3)^x=u+v\:(say)

\implies\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx}

u=x^{x^3}

\text{Take logarithm on both sides }

log\:u=log\:x^{x^3}

log\:u=x^3\:log\:x

\text{differentiate with respect to x}

\frac{1}{u}\frac{du}{dx}=x^3(\frac{1}{x})+logx\:3x^2

\frac{du}{dx}=u[x^2+logx\:3x^2]

\frac{du}{dx}=x^{x^3}[x^2+logx\:3x^2]

\frac{du}{dx}=x^{x^3}x^2[1+3\:logx]

\bf\frac{du}{dx}=x^{x^3+2}[1+3\:logx]

v=(x^3)^x

\text{Take logarithm on both sides }

log\:v=x\:log\:x^3

log\:v=3\:xlogx

\text{differentiate with respect to x}

\frac{1}{v}\frac{dv}{dx}=3[x(\frac{1}{x})+logx.1]

\frac{dv}{dx}=3v[1+logx]

\frac{dv}{dx}=3(x^3)^x[1+logx]

\bf\frac{dv}{dx}=3(x^3)^x[1+logx]

\therefore\:\bf\frac{dy}{dx}=x^{x^3+2}[1+3\:logx]+3(x^3)^x[1+logx]

Similar questions