Math, asked by priyasusanparackal, 9 hours ago

differentiate 1-cos2x/1+cos2x (pls write the steps)

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\  \frac{d}{dx} ( \frac{1 - cos2x}{1 + cos2x} ) \\  \\ we \: know \: that \\ cos2x = cos {}^{2} x - sin {}^{2} x \\  \\ y =  \frac{1 - cos2x}{1 + cos2x}  \\  \\  =  \frac{1 - (cos {}^{2}x - sin {}^{2}x)  }{1 + cos {}^{2} - sin {}^{2}x  }  \\  \\  =  \frac{1 - cos {}^{2} x + sin {}^{2}x }{1 - sin {}^{2} x + cos {}^{2} x}  \\  \\  =  \frac{sin {}^{2} x + sin {}^{2} x}{cos {}^{2}x + cos {}^{2} x}  \\  \\  =  \frac{sin {}^{2} x}{cos {}^{2}x }  \\  \\  y= tan {}^{2} x \\  \\ differenntiating \: both \: sides \\ we \: get \\  \frac{dy}{dx}  =  \frac{d}{dx} (tan {}^{2} x) \\  \\  =  \frac{d}{dx} (tan \: x.tan \: x) \\  \\ we \: know \: that \\  \frac{du}{dv}  = u. \frac{dv}{dx}  + v. \frac{du}{dx}  \\  \\  = tan \: x. \frac{d}{dx} (tan \: x) + tan \: x. \frac{d}{dx} (tan \: x) \\  \\  we \: know \: that \\  \frac{d}{dx} (tan \: x) = sec {}^{2} x \\  \\  = tan \: x.sec {}^{2} x + tan \: x.sec {}^{2} x \\   \\  = 2.tan \: x.sec {}^{2} x \\  or \\  = 2. \frac{sin \: x}{cos {}^{3}x }

Similar questions