Math, asked by prabhasharma1128, 10 months ago

differentiate (2-3cosx)/sinx

Answers

Answered by FehlingSolution
5

y =  \frac{2 - 3 \cos(x) }{ \sin(x) }

 \frac{dy}{dx}  =  \frac{3 \sin(x).  \sin(x) -   \cos(x). (2 - 3 \sin(x) ) } {{sin}^{2} (x)}

 \frac{dy}{dx}  =  \frac{3 {sin}^{2}(x)  - 2 \cos(x)  + 3 \sin(x) \cos(x)  }{ {sin}^{2}(x) }

Answered by yash3374
0

Answer:

Hii dear

Here is Your answer

y = \frac{2 - 3 \cos(x) }{ \sin(x) }y=

sin(x)

2−3cos(x)

\frac{dy}{dx} = \frac{3 \sin(x). \sin(x) - \cos(x). (2 - 3 \sin(x) ) } {{sin}^{2} (x)}

dx

dy

=

sin

2

(x)

3sin(x).sin(x)−cos(x).(2−3sin(x))

\frac{dy}{dx} = \frac{3 {sin}^{2}(x) - 2 \cos(x) + 3 \sin(x) \cos(x) }{ {sin}^{2}(x) }

dx

dy

=

sin

2

(x)

3sin

2

(x)−2cos(x)+3sin(x)cos(x)

Similar questions