Math, asked by yashraj2642, 1 month ago

differentiate : 2√cot (x²)​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\:y = 2 \sqrt{cot {x}^{2} }}

On differentiating both sides, w. r. t. x, we get

{\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}2 \sqrt{cot {x}^{2} }}

We know,

\red{\rm :\longmapsto\:\dfrac{d}{dx}k \: f(x) = k\dfrac{d}{dx} \: f(x)}

So, using this we get

{\rm :\longmapsto\:\dfrac{d}{dx}y =2 \:  \dfrac{d}{dx}\sqrt{cot {x}^{2} }}

Now, we know,

\red{\rm :\longmapsto\:\dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x} }}

So, using this result, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 2 \times \dfrac{1}{2 \sqrt{cot {x}^{2} } } \dfrac{d}{dx}cot {x}^{2}

We know,

\red{\rm :\longmapsto\:\dfrac{d}{dx}cotx =  -  {cosec}^{2}x}

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{1}{ \sqrt{cot {x}^{2} } } ( -  {cosec}^{2}  {x}^{2} )\dfrac{d}{dx} {x}^{2}

We know,

\red{\rm :\longmapsto\:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{1}{2 \sqrt{cot {x}^{2} } } ( -  {cosec}^{2}  {x}^{2} )(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \:  \dfrac{1}{\sqrt{cot {x}^{2} } } ({cosec}^{2}  {x}^{2} )(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -2 x \:  {cosec}^{2} {x}^{2}  }{\sqrt{cot {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ - 2x \:\sqrt{sin {x}^{2} } }{ {sin}^{2} {x}^{2}  \sqrt{cos {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -2 x \:\sqrt{sin {x}^{2} } }{ sin {x}^{2}   \: . \: {sin} {x}^{2}  \sqrt{cos {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -2 x \: }{ sin {x}^{2}   \: . \: \sqrt{sin {x}^{2} }  \sqrt{cos {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -  2\sqrt{2} x \: }{ sin {x}^{2}   \:  \sqrt{2} \: \sqrt{sin {x}^{2} }  \sqrt{cos {x}^{2} } }

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -2  \sqrt{2} x \: }{ sin {x}^{2}   \:  \sqrt{2\:sin {x}^{2}  cos {x}^{2} }}

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -  2\sqrt{2} x \: }{ sin {x}^{2}   \:  \sqrt{\:sin2 {x}^{2} }}

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{ -  2\sqrt{2} x  \: cosec {x}^{2} \: }{   \:  \sqrt{\:sin2 {x}^{2} }}

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

\boxed{ \bf{ \: \dfrac{d}{dx}cosx =   -  \: sinx}}

\boxed{ \bf{ \: \dfrac{d}{dx}cosecx =   -  \: cosecx \: cotx}}

\boxed{ \bf{ \: \dfrac{d}{dx}secx =    \: secx \: tanx}}

\boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}cotx =   -  \: {cosec}^{2}x}}

Answered by Anonymous
30

Answer:

-2xcsc²x² √tan(x²)

Step-by-step explanation:

As per the information provided in the given question, We have :

  • y = 2√cot (x²)

We are given with the value of y. We are asked to find d/dx with respect to y i.e 2√cot (x²).

In order to find d/dx, We will use chain rule.

  \longmapsto \rm  \dfrac{d}{dx} (2 \sqrt{ \cot( {x}^{2} ) } )

This can be written as,

  \longmapsto \rm  2\dfrac{d}{dx} (\sqrt{ \cot( {x}^{2} ) } )

Applying the chain rule,

 \longmapsto \rm   \dfrac{1}{ 2\sqrt{ \cot( {x}^{2} ) } } \dfrac{d}{dx} \bigg ( \cot( {x}^{2} ) \bigg )

d/dx of cot(x) is - csc²x Thus, d/dx of cot(x²) is - csc²x²,

\longmapsto \rm  2 \:  \dfrac{1}{ 2\sqrt{ \cot( {x}^{2} ) } } ( -   { \csc}^{2}  {x}^{2} ) \times 2x

By cancelling 2,

\longmapsto \rm  \:  \dfrac{1}{ \sqrt{ \cot( {x}^{2} ) } } ( -   { \csc}^{2}  {x}^{2} ) \times 2x

1/√cot(x) is √tan x. Thus, 1/√cot(x²) is √tan x²,

\longmapsto \rm  \:  { \sqrt{ \tan( {x}^{2} ) }  } ( -   { \csc}^{2}  {x}^{2} ) \times 2x

\longmapsto \rm  \:    - 2x  { \csc}^{2}{x}^{2}  { \sqrt{ \tan( {x}^{2} ) }  }

∴ -2xcsc²x²√tan(x²) is the derivative of 2√cot (x²).

Learn more!

\begin{gathered}\boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Differentiation  \:formulae:}}\\\\\bigstar\:\:\sf{ \dfrac{d}{dx}   \times { {x}^{n}}  = n \times  {x}^{n - 1} } \\\\\bigstar\:\:\sf{ \dfrac{d}{dx} ( {x}) = 1 }\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( { Cons}) = 0\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {   log(x)  }) =  \dfrac{1}{x} \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sqrt{x}} )=  \dfrac{1}{2 \sqrt{x} }\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sin(x)} )=   \cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\cos(x)} )= - \sin(x) \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sin(x)} )=   \cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\tan(x)} )=     { \sec}^{2} (x) \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\cot(x)} )=-  { \cosec}^{2} (x) \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sec(x)} )=\sec(x) \times  \tan(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\cosec(x)})= - \cosec(x) \times \cot(x)\end{array}}\end{gathered}

Similar questions