Math, asked by sadiashikder098, 3 months ago

Differentiate: 2 sin² 2x​

Answers

Answered by MagicalBeast
3

Differentiate :

2 sin² (2x)

Solution :

\sf  \dfrac{d}{dx}  \bigg(2 \:  \sin ^{2} (2x)  \:  \bigg) \\  \\  \sf   \implies \: 2  \:  \bigg(  \:  \dfrac{d}{dx}  \sin ^{2} (2x)  \:  \bigg) \:  \\  \\ \sf   \implies \: 2  \:  \:  \dfrac{d}{dx} \:  \bigg(  \sin (2x)  \:  \bigg)^{2}

[ Note - using identity

 \sf \dfrac{d \: {(x + a)}^{m}  }{dx}  \:  =  \:  m \times {(x + a)}^{(m - 1)}  \times \dfrac{d \: (x + a)  }{dx} ]

\sf   \implies \: 2  \times \bigg[   2  \times  \:   \bigg(   \sin (2x)  \: ^{(2 - 1)}  \bigg)  \times \: \dfrac{d( \sin(2x) }{dx} \bigg]\:

[ Note - Differentiation of sin(x) = cosx ]

\sf   \implies \:   4  \times  \:   \bigg(   \sin (2x)   \bigg)  \times \bigg( \:  \cos(2x)  \times  \: \dfrac{d(2x) }{dx} \bigg) \\  \\ \sf   \implies \:4 \times  \sin(2x)  \cos(2x)  \times  \bigg(2 \dfrac{d(x)}{dx}  \bigg) \\  \\  \sf   \implies \:4 \times  \sin(2x)  \cos(2x)  \times  2 \\  \\  \sf   \implies \:8\times  \sin(2x)  \cos(2x)

On simplifying,

8 sin(2x)cos(2x) = 2× [ 4 sin(2x) cos(2x) ]

[ Note - use identity , sin(2A) = 2sin(A) cos(A) ]

= 2 × sin(4x)

ANSWER :

  \sf \: \dfrac{d}{dx}  \bigg(2 \:  \sin^{2} (2x)  \:  \bigg) \:  =  \:  \bold{8 \sin(2x) \cos(2x)   \:  =  \:  \: 2 \sin(4x) }

Similar questions