Math, asked by bhavarrajesh53, 1 year ago

differentiate 2sinx with respect ex​

Answers

Answered by MaheswariS
1

\textbf{To find:}

\textsf{Derivative of 2 sinx with respect to}\;\mathsf{e^x}

\mathsf{That\,is,\,\dfrac{d(2\,sinx)}{d(e^x)}}

\textbf{Solution:}

\textbf{Formula used:}

\boxed{\begin{minipage}{4cm}$\\\mathsf{\;\;\;\dfrac{d(sinx)}{dx}=cosx}\\\\\mathsf{\;\;\;\dfrac{d(e^x)}{dx}=e^x}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{\dfrac{d(2\,sinx)}{d(e^x)}}

\mathsf{=\dfrac{\dfrac{d(2\,sinx)}{dx}}{\dfrac{d(e^x)}{dx}}}

\mathsf{=\dfrac{\dfrac{2\,d(sinx)}{dx}}{\dfrac{d(e^x)}{dx}}}

\mathsf{=\dfrac{2\,cosx}{e^x}}

\implies\boxed{\mathsf{\dfrac{d(2\,sinx)}{d(e^x)}=\dfrac{2\,cosx}{e^x}}}

\textbf{Find more:}

Find dy/dx y=cot^3[log(x^3)]​

https://brainly.in/question/16678493

If y=x+√(x²-1), then y-x(dy/dx) = ???

https://brainly.in/question/21230642

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

 \sf{Differentiate \:  \: 2 \sin x \:  \: with \: respect \: to \:  \:  {e}^{x} }

EVALUATION

Let

 \sf{y = 2 \sin x}

 \sf{z =  {e}^{x} }

Now

 \displaystyle \sf{ \frac{dy}{dx}  = 2 \cos x}

 \displaystyle \sf{ \frac{dz}{dx}  =  {e}^{x} }

Hence the required differential

 \displaystyle \sf{ \frac{dy}{dz}  }

 \displaystyle \sf{ =  \frac{dy}{dx}  \:  .    \: \frac{dx}{dz}  }

 \displaystyle \sf{ =  \frac{ \frac{dy}{dx}}{ \frac{dz}{dx}}     }

 \displaystyle \sf{ =  \frac{2 \cos x}{ {e}^{x} }  }

 \displaystyle \sf{ =  2 \:  {e}^{ - x}\cos x}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

2. Find the nth derivative of sin 6x cos4x

https://brainly.in/question/29905039

Similar questions