Physics, asked by poriyatushar, 8 months ago

differentiate 2x+3/x2-5​

Answers

Answered by BrainlyTornado
19

ANSWER:

d/dx [ (2x + 3) / x² - 5 ] = \frac{  - 2 ( {x}^{2} + 3x + 5)  }{ {( {x}^{2}  - 5) }^{2} }

GIVEN:

(2x + 3) / x² - 5

TO FIND:

d/dx [ (2x + 3) / x² - 5 ]

FORMULAE:

d/dx (u/v) = (vu' - uv') ÷ v²

d/dx (x²) = 2x

d/dx (constant) = 0

dx/dx = 1

EXPLANATION:

 \frac{d}{dx} ( \frac{2x + 3}{ {x}^{2} - 5 } )  \\  \\  =  \frac{ ({x}^{2}  - 5) \frac{d}{dx} (2x + 3) - (2x + 3) \frac{d}{dx}( {x}^{2}  - 5) }{ {( {x}^{2} - 5) }^{2} }  \\  \\   = \frac{ ({x}^{2}  - 5)(2) - (2x + 3) (2x)}{ {( {x}^{2}  - 5) }^{2} } \\  \\  = \frac{ 2{x}^{2}  - 10 - 4 {x}^{2}  - 6x}{ {( {x}^{2}  - 5) }^{2} } \\  \\ = \frac{  - 2 {x}^{2} - 6x - 10 }{ {( {x}^{2}  - 5) }^{2} } \\  \\  = \frac{  - 2 ( {x}^{2} + 3x + 5)  }{ {( {x}^{2}  - 5) }^{2} }

HENCE WE WILL GET,

d/dx [(2x + 3) / x² - 5] = \frac{  - 2 ( {x}^{2} + 3x + 5)  }{ {( {x}^{2}  - 5) }^{2} }

Answered by sowbarnikaambaa
7

Explanation:

The answer is written in the above attachment...

Attachments:
Similar questions