differentiate 3 sin x - 4 cos x
Answers
Answered by
0
Answer:
Step-by-step explanation:
(
dx
d
4cosx)−(
dx
d
3sinx)
2 Use Constant Factor Rule: \frac{d}{dx} cf(x)=c(\frac{d}{dx} f(x))
dx
d
cf(x)=c(
dx
d
f(x)).
4(\frac{d}{dx} \cos{x})-(\frac{d}{dx} 3\sin{x})4(
dx
d
cosx)−(
dx
d
3sinx)
3 Use Trigonometric Differentiation: the derivative of \cos{x}cosx is -\sin{x}−sinx.
-4\sin{x}-(\frac{d}{dx} 3\sin{x})−4sinx−(
dx
d
3sinx)
4 Use Constant Factor Rule: \frac{d}{dx} cf(x)=c(\frac{d}{dx} f(x))
dx
d
cf(x)=c(
dx
d
f(x)).
-4\sin{x}-3(\frac{d}{dx} \sin{x})−4sinx−3(
dx
d
sinx)
5 Use Trigonometric Differentiation: the derivative of \sin{x}sinx is \cos{x}cosx.
-4\sin{x}-3\cos{x}−4sinx−3cosx
Done
Similar questions