Math, asked by hariomsingh941565, 10 months ago

differentiate 3 sin x - 4 cos x​

Answers

Answered by 8443
0

Answer:

Step-by-step explanation:

(

​dx

​d

​​ 4cosx)−(

​dx

​d

​​ 3sinx)

2 Use Constant Factor Rule: \frac{d}{dx} cf(x)=c(\frac{d}{dx} f(x))

​dx

​d

​​ cf(x)=c(

​dx

​d

​​ f(x)).

4(\frac{d}{dx} \cos{x})-(\frac{d}{dx} 3\sin{x})4(

​dx

​d

​​ cosx)−(

​dx

​d

​​ 3sinx)

3 Use Trigonometric Differentiation: the derivative of \cos{x}cosx is -\sin{x}−sinx.

-4\sin{x}-(\frac{d}{dx} 3\sin{x})−4sinx−(

​dx

​d

​​ 3sinx)

4 Use Constant Factor Rule: \frac{d}{dx} cf(x)=c(\frac{d}{dx} f(x))

​dx

​d

​​ cf(x)=c(

​dx

​d

​​ f(x)).

-4\sin{x}-3(\frac{d}{dx} \sin{x})−4sinx−3(

​dx

​d

​​ sinx)

5 Use Trigonometric Differentiation: the derivative of \sin{x}sinx is \cos{x}cosx.

-4\sin{x}-3\cos{x}−4sinx−3cosx

Done

Similar questions