Differentiate 3cos x + 2log x + 21x + 5.
Answers
Answer:
- 3 Sinx + ( 2 / x ) + 21
Step-by-step explanation:
Given---> y = 3Cosx + 2 logx + 21x + 5
To find---> Derivative of given function
Solution---> We know that,
1) d / dx ( Cosx ) = - Sinx
2) d / dx ( log x ) = 1 / x
3) d / dx ( x ) = 1
4) d / dx ( Constant ) = 0
Now , returning to original problem,
Let,
y = 3 Cosx + 2 logx + 21x + 5
Differentiating with respect to x , we get,
dy/dx = d/dx ( 3Cosx + 2logx + 21x + 5 )
= d/dx(3Cosx ) + d/dx(2logx) + d/dx(21x) + d/dx( 5 )
Applying above formula , we get,
= - 3Sinx + ( 2 / x ) + 21 ( 1 ) + 0
= - 3Sinx + ( 2 / x ) + 21
Additional information ---->
1) d / dx ( xⁿ ) = n xⁿ⁻¹
2) d / dx ( eˣ ) = eˣ
3) d / dx ( aˣ ) = aˣ loga
4) d / dx ( Sinx ) = Cosx
5) d / dx ( tanx ) = Sec² x
6) d / dx ( Secx ) = Secx tanx
7) d / dx ( Cosecx ) = - Cosecx Cotx
8) d / dx ( Cotx ) = - Cosec² x