Math, asked by venvenamualchin2004, 21 days ago

differentiate 4^x cosec x (can anyone help with step by step solution)​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {4}^{x} \: cosecx \:

Let assume that

\rm :\longmapsto\: y \:  =  \: {4}^{x} \: cosecx \:

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}y \:  =\dfrac{d}{dx} [ \: {4}^{x} \: cosecx \: ]

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}uv \:  =  \: v\dfrac{d}{dx}u \:  + \: u\dfrac{d}{dx}v}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {4}^{x}\dfrac{d}{dx}cosecx + cosecx\dfrac{d}{dx} {4}^{x}

We know

\boxed{ \tt{ \: \dfrac{d}{dx} {a}^{x} \:  =  \:  {a}^{x} \: loga \: }} \\  \\ and \\  \\ \boxed{ \tt{ \: \dfrac{d}{dx}cosecx =  - cosecx \: cotx}} \\

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {4}^{x}[ - cosecx \: cotx] \:  +  \: cosecx \:  {4}^{x} \: log4

\rm :\longmapsto\:\dfrac{dy}{dx} =   {4}^{x}cosecx \:[ -  cotx\:  +  \: log4 \: ]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions