Math, asked by Mohammedyounas6429, 12 hours ago

Differentiate 4x^3 + 4x with respect to x^2 +2

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

\rm \: u =  {4x}^{3} + 4x \\

and

\rm \: v =  {x}^{2} + 2 \\

Now, Consider

\rm \: u =  {4x}^{3} + 4x \\

Differentiate both sides w. r. t. x we get

\rm \: \dfrac{d}{dx}u =  \dfrac{d}{dx}({4x}^{3} + 4x) \\

\rm \: \dfrac{du}{dx} =  4\dfrac{d}{dx}{x}^{3} + 4\dfrac{d}{dx}x \\

We know,

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

So, using this result, we get

\rm \: \dfrac{du}{dx} = 4( {3x}^{2}) + 4 \times 1 \\

\bf\implies \:\dfrac{du}{dx} = 12 {x}^{2}  + 4 \\

Now, Consider

\rm \: v =  {x}^{2} + 2 \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}v = \dfrac{d}{dx}({x}^{2} + 2) \\

\rm \: \dfrac{dv}{dx} = \dfrac{d}{dx}{x}^{2} + \dfrac{d}{dx}2 \\

\rm \: \dfrac{dv}{dx} =  {2x}^{2 - 1}  + 0 \\

\bf\implies \:\dfrac{dv}{dx} = 2x

Now, Consider

\rm \: \dfrac{du}{dv} \\

\rm \:  =  \: \dfrac{du}{dx} \div \dfrac{dv}{dx} \\

\rm \:  =  \: \dfrac{12 {x}^{2}  + 4}{2x}

\rm \:  =  \: 6x + \dfrac{2}{x}

Hence,

\rm \: \bf\implies \:\dfrac{du}{dv}=  \: 6x + \dfrac{2}{x}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {x}^{n}  & \sf  {nx}^{n - 1}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Similar questions