Math, asked by RameezH, 1 year ago

Differentiate :
5tanx-3sinx+4x^3/2

Answers

Answered by muscardinus
3

The derivative of y=5\tan x-3\sin x+\dfrac{4x^3}{2} is 5\sec ^2 x-3\cos x+24x^2

Step-by-step explanation:

Let y=5\tan x-3\sin x+\dfrac{4x^3}{2}

We need to differentiate it as :

y=5\tan x-3\sin x+\dfrac{4x^3}{2}\\\\\dfrac{dy}{dx}=\dfrac{d(5\tan x-3\sin x+\dfrac{4x^3}{2})}{dx}\\\\\dfrac{dy}{dx}=\dfrac{d(5\tan x)}{dx}-\dfrac{d(3\sin x)}{dx}+\dfrac{d(\dfrac{4x^3}{2})}{dx})}{dx}\\\\\dfrac{dy}{dx}=5\dfrac{d(\tan x)}{dx}-3\dfrac{d(\sin x)}{dx}+2\dfrac{d(4x^3)}{dx})}{dx}\\\\\dfrac{dy}{dx}=5\sec ^2 x-3\cos x+2(12x^2)\\\\\dfrac{dy}{dx}=5\sec ^2 x-3\cos x+24x^2

So, the derivative of y=5\tan x-3\sin x+\dfrac{4x^3}{2} is 5\sec ^2 x-3\cos x+24x^2

Learn more,

Differentiation

https://brainly.in/question/14813604

Similar questions