Physics, asked by vllblavanyasaini0409, 5 months ago

differentiate a*2+x*2/a*2-x*2​

Answers

Answered by Anonymous
2

Hey There

Here's The Answer

_________________________

Kindly refer to the Attachment

Hope It Helps.

Attachments:
Answered by Anonymous
7

Solution:-

 \to \rm \:  \dfrac{d}{dx}   \bigg(\dfrac{ {a}^{2} +  {x}^{2}  }{ {a}^{2} -  {x}^{2}  }  \bigg)

Using U/V method

 \boxed{ \rm \:  \dfrac{d}{dx}  \bigg( \dfrac{u}{v}  \bigg) =  \dfrac{v \dfrac{du}{dx}  - u \dfrac{dv}{dx} }{ {v}^{2} } }

Now using this method:-

 \rm \to \:  \dfrac{d}{dx}   \bigg(\dfrac{ {a}^{2} +  {x}^{2}  }{ {a}^{2} -  {x}^{2}  }  \bigg) =  \dfrac{( {a}^{2}  - x {}^{2} ) \times 2x - (a {}^{2} +  {x}^{2} ) \times  - 2x }{( {a}^{2} -  {x}^{2}  )^{2} }

 \rm = \dfrac{( {a}^{2}    - x {}^{2} ) \times 2x  + (a {}^{2} +  {x}^{2} ) \times   2x }{( {a}^{2} -  {x}^{2}  )^{2} }

 =  \rm \:  \dfrac{2x {a}^{2} - 2 {x}^{3}  + 2x {a}^{2}   + 2 {x}^{3} }{( {a}^{2} -  {x}^{2}  ) {}^{2} }

=  \rm \:  \dfrac{2x {a}^{2} -  \cancel{2 {x}^{3} } + 2x {a}^{2}   + \cancel{ 2 {x}^{3}} }{( {a}^{2} -  {x}^{2}  ) {}^{2} }

 =  \rm \:  \dfrac{4x {a}^{2} }{( {a}^{2} -  {x}^{2} ) ^{2}  }

Answer is

 =  \rm \:  \dfrac{4x {a}^{2} }{( {a}^{2} -  {x}^{2} ) ^{2}  }


Vamprixussa: Splendid !
Similar questions