Math, asked by shriyaagrawal031, 8 months ago

Differentiate
cos^-1{1-x^2\1+x^2}​

Answers

Answered by kaushik05
7

To differentiate :

 \star \:  { \cos}^{ - 1} ( \frac{1 -  {x}^{2} }{1 +  {x}^{2} } ) \\

Here ,

Put ,x = tan @

we get ,

 \implies \:  { \cos}^{ - 1} ( \frac{1 -  { \tan}^{2}  \alpha }{1 +  { \tan}^{2} \:  \: \alpha } ) \\

As we know that :

 \star \: \boxed{  \cos \: 2 \theta \:  =  \frac{1 -  { \tan}^{2}  \theta}{1 +  { \tan}^{2} \theta }}  \\

 \implies \:  { \cos}^{ - 1} ( \cos2 \alpha ) \\  \\  \implies \: 2 \alpha  \\  \\

Now put the value of @ .

 \implies \: 2 \:  { \tan}^{ - 1}  x

Now , differentiate w.r.t x ,

 \star \:  \frac{d}{dx} (2 { \tan}^{ - 1} x) \\  \\  \star \: 2( \frac{1}{1 +  {x}^{2} } )

Formula used:

 \leadsto \bold{  { \cos}^{ - 1} ( \cos \theta) =  \theta} \\

 \leadsto \:   \bold{\frac{d}{dx}  { \tan}^{ - 1} x =  \frac{1}{1 +  {x}^{2} } } \\

Answered by Anonymous
2

Given ,

The function is  \tt  y = {cos}^{ - 1} \{ \frac{1 -  {(x)}^{2} }{1 +  {(x)}^{2} } \}

Let , x = tan(θ) => tan^(-1)x = θ

Thus ,

\tt y =  {cos}^{ - 1} \{ \frac{1 -  {tan}^{2} \theta}{1 +  {tan}^{2} \theta } \}

 \tt y =  {cos}^{ - 1}  \{ cos2 \theta\}

 \tt y = 2 \theta

 \tt y = 2 {tan}^{ -1 } (x)

Now , differentiating y wrt x , we get

 \tt  \frac{dy}{dx}  =  \frac{d \{2 {tan}^{ - 1}  (x)\}}{dx}

 \tt \frac{dy}{dx}  = 2 \times  \frac{1}{1 +  {(x)}^{2} }

\tt \frac{dy}{dx}  =   \frac{2}{1 +  {(x)}^{2} }

Remmember :

 \tt cos(2x) =  \frac{1 -  {(x)}^{2} }{1 +  {(x)}^{2} }

\tt {cos}^{ - 1}\{cos(x) \} = x

 \tt \frac{d \{ {tan}^{ - 1}(x)  \} }{dx}  =  \frac{1}{1 +  {(x)}^{2} }

_________________ Keep Smiling ☺️

Similar questions