Differentiate cos-1 (a+bcosx)/(b+acosx)
Answers
Answered by
11
Hey mam
Here is your Answer. .
is not too complicated if one goes through the chain rule of derivatives.
arccos(b+acosxa+bcosx)udFdx=arccos(u)=F(u(x))=b+acosxa+bcosx=dFdududx
arccos(b+acosxa+bcosx)=arccos(u)=F(u(x))u=b+acosxa+bcosxdFdx=dFdududx
dFdu=−11−u2−−−−−√=−11−(b+acosxa+bcosx)2−−−−−−−−−−−−√
dFdu=−11−u2=−11−(b+acosxa+bcosx)2
dudx=(−asinx)(a+bcosx)−(b+acosx)(−bsinx)(a+bcosx)2=1(a+bcosx)2[−a2sinx−absinxcosx+b2sinx+absinxcosx]=1(a+bcosx)2[−a2sinx+b2sinx]=(b2−a2)sinx(a+bcosx)2
dudx=(−asinx)(a+bcosx)−(b+acosx)(−bsinx)(a+bcosx)2=1(a+bcosx)2[−a2sinx−absinxcosx+b2sinx+absinxcosx]=1(a+bcosx)2[−a2sinx+b2sinx]=(b2−a2)sinx(a+bcosx)2
dFdx=dFdududx=−11−(b+acosxa+bcosx)2−−−−−−−−−−−−√(b2−a2)sinx(a+bcosx)2=−1(a+bcosx)2−(b+acosx)2−−−−−−−−−−−−−−−−−−−−−−−√(b2−a2)sinx|a+bcosx|=sgn(sinx)a2−b2−−−−−−√|a+bcosx|
hope it is help you.
Here is your Answer. .
is not too complicated if one goes through the chain rule of derivatives.
arccos(b+acosxa+bcosx)udFdx=arccos(u)=F(u(x))=b+acosxa+bcosx=dFdududx
arccos(b+acosxa+bcosx)=arccos(u)=F(u(x))u=b+acosxa+bcosxdFdx=dFdududx
dFdu=−11−u2−−−−−√=−11−(b+acosxa+bcosx)2−−−−−−−−−−−−√
dFdu=−11−u2=−11−(b+acosxa+bcosx)2
dudx=(−asinx)(a+bcosx)−(b+acosx)(−bsinx)(a+bcosx)2=1(a+bcosx)2[−a2sinx−absinxcosx+b2sinx+absinxcosx]=1(a+bcosx)2[−a2sinx+b2sinx]=(b2−a2)sinx(a+bcosx)2
dudx=(−asinx)(a+bcosx)−(b+acosx)(−bsinx)(a+bcosx)2=1(a+bcosx)2[−a2sinx−absinxcosx+b2sinx+absinxcosx]=1(a+bcosx)2[−a2sinx+b2sinx]=(b2−a2)sinx(a+bcosx)2
dFdx=dFdududx=−11−(b+acosxa+bcosx)2−−−−−−−−−−−−√(b2−a2)sinx(a+bcosx)2=−1(a+bcosx)2−(b+acosx)2−−−−−−−−−−−−−−−−−−−−−−−√(b2−a2)sinx|a+bcosx|=sgn(sinx)a2−b2−−−−−−√|a+bcosx|
hope it is help you.
Answered by
0
Answer:
cos-1 ( b+acosx/ a+bcosx)
Similar questions