Math, asked by nabeelahmedna7860, 4 hours ago

differentiate cos x^3.sin^2(x^5)with respect to x​

Answers

Answered by saichavan
13

 Let -

 \cos(x)  {}^{3}  \cdot  \sin {}^{2} (x^{5} ) = f(x)

 To \: find : f' (x)

Differentiate \: the \: function \: on \:  both \: the \: sides \: w.r.t \: x

f'(x) = d( \cos \: x^{3} )  \cdot \:  { \sin }^{2} ( {x}^{5} ) + d( \sin {}^{2} ( {x}^{5} ) \cdot \:  \cos( {x}^{3} )

 Differentiate the \cos \: x^{3} and { \sin}^{x} {x}^{5} \: w.r.t \: x.

 \green{f'(x) =  -  \sin( {x}^{3} )  \cdot \: 3 {x}^{2}  \cdot \:  { \sin }^{2} ( {x}^{5} ) + 2 \sin( {x}^{5} )  \cdot \: 5 {x}^{4}  \cdot \:  \cos{x}^{3}}

Similar questions