Math, asked by anjanavarghese24, 10 months ago

differentiate (cosx^3)×(sin^2x^5)​

Answers

Answered by Anonymous
26

y =  \cos( {x}^{3} )  \times  \sin^{2}(2 {x}^{5})

By using differention formula by product rule we get :-

 \frac{dy}{dx}  =  -  \sin( {x}^{3} )  \times 3 {x}^{2}  \times  \sin^{2}  {x}^{5} )  +  \cos( {x}^{3} )  \times2 </strong><strong>\</strong><strong>s</strong><strong>i</strong><strong>n</strong><strong>{</strong><strong>x</strong><strong>}</strong><strong>^</strong><strong>{</strong><strong>5</strong><strong>}</strong><strong> \cos( {x}^{5} ) 5 {x}^{4}

Answered by lingesh505
8

Step-by-step explanation:

y=cos(x

3

)×sin

2

(2x

5

)

By using differention formula by product rule we get :-

\frac{dy}{dx} = - \sin( {x}^{3} ) \times 3 {x}^{2} \times \sin^{2} {x}^{5} ) + \cos( {x}^{3} ) \times2 \sin{x}^{5} \cos( {x}^{5} ) 5 {x}^{4}

dx

dy

=−sin(x

3

)×3x

2

×sin

2

x

5

)+cos(x

3

)×2sinx

5

cos(x

5

)5x

4

Similar questions