Differentiate  (cotx*3)*5/3w.r.t. x
Answers
Answered by
2
Answer:
dy/dx = -5x²{ cosec (x³) (cot x³)^5/3 }
Step-by-step explanation:
y=(cotx³)^5/3
let x³=t
then dt/dx=3x²------------(1)
and z=cot t
dz/dt=-cosec(t)*cot(t)------(2)
y=z^5/3
dy/dz=5/3z^(5/3-1)
dy/dz=5/3z^2/3--------(3)
Using the chain rule
dy/dx=dy/dz*dz/dt*dt/dx
=( 5/3z^2/3) { -cosec(t)*cot(t)} *3x²
Putting the values of z and t
dy/dx =[5/3{ cot x³)^2/3 } { -cosec(x³) cot(x³) }*3x²
dy/dx = -5x²{ cosec (x³) (cot x³)^5/3 }
Similar questions