Math, asked by mehak846650, 5 months ago

differentiate e power log (x+ root x square+a square​

Answers

Answered by mathdude500
3

Answer:

Question

\bf \:Differnatiate \:  {e}^{ log(x +  \sqrt{ {x}^{2}  +  {a}^{2} } ) } w.r.t. \: x

Answer

Formula Used:-

\bf \:\dfrac{d}{dx}  {x}^{n }  = n {x}^{n - 1}

\bf \:\dfrac{d}{dx} log(x)  =  \dfrac{1}{x}

\bf \:\dfrac{d}{dx} \sqrt{x}  =  \dfrac{1}{2 \sqrt{x} }

\bf \:\dfrac{d}{dx}k = 0

\bf \: {e}^{ log(x) }  = x

Solution:-

\bf \:Let \: y =  {e}^{ log(x +  \sqrt{ {x}^{2}  +  {a}^{2} } ) }

\bf\implies \:y =  log(x +  \sqrt{ {x}^{2}  +  {a}^{2} } )

\bf \:Differnatiate \: w.r.t. \: x

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{d}{dx}  log(x +  \sqrt{ {x}^{2} +  {a}^{2}  } )

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{1}{x +  \sqrt{ {x}^{2}  +  {a}^{2} } } \dfrac{d}{dx}( x +  \sqrt{ {x}^{2} +  {a}^{2}  } )

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{1}{x +  \sqrt{ {x}^{2}  +  {a}^{2} } } (1 + \dfrac{1}{2 \sqrt{ {x}^{2} +  {a}^{2}  } } \dfrac{d}{dx} ( {x}^{2}  +  {a}^{2} )

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{1}{x +  \sqrt{ {x}^{2}  +  {a}^{2} } } (1 + \dfrac{1}{2 \sqrt{ {x}^{2} +  {a}^{2}  } }(2x))

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{1}{x +  \sqrt{ {x}^{2}  +  {a}^{2} } } (1 + \dfrac{x}{ \sqrt{ {x}^{2} +  {a}^{2}  } })

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{1}{x +  \sqrt{ {x}^{2}  +  {a}^{2} } } ( \dfrac{x +  \sqrt{ {x}^{2} +  {a}^{2}  } }{ \sqrt{ {x}^{2} +  {a}^{2}  } })

\bf\implies \:\dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{ {x}^{2} +  {a}^{2}  } }

_____________________________________________

Answered by yashwanth102030
2

Step-by-step explanation:

This is the answer ......

Attachments:
Similar questions