Math, asked by aayush799753, 4 months ago

Differentiate
e
 {e}^{2x} +  {e}^{ - 2x}   \div   {e}^{2x}  -  {e}^{ - 2x}

Answers

Answered by newsingh409
0

Answer:

this is your answer.

Step-by-step explanation:

hope it help you.

Attachments:
Answered by mathdude500
3

\tt\implies \:Let \: y \:  =  \:  \dfrac{{e}^{2x} + {e}^{ - 2x}}{{e}^{2x}  -  {e}^{ - 2x}}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

\tt\implies \:\dfrac{d}{dx}  {e}^{x}  =  {e}^{x}

\tt\implies \:\dfrac{d}{dx} ( \dfrac{u}{v} ) = \dfrac{v\dfrac{d}{dx} u - u\dfrac{d}{dx} v}{ {v}^{2} }

\tt\implies \: {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy

\large\underline\purple{\bold{Solution :-  }}

\tt\implies \ \: y \:  =  \:  \dfrac{{e}^{2x} + {e}^{ - 2x}}{{e}^{2x}  -  {e}^{ - 2x}}

☆ On differentiating both sides w. r. t. x, we get

\tt\implies \: \dfrac{d}{dx} \: y \:  = \dfrac{d}{dx}  \:  \dfrac{{e}^{2x} + {e}^{ - 2x}}{{e}^{2x}  -  {e}^{ - 2x}}

\tt\dfrac{dy}{dx}  = \dfrac{({e}^{2x}  -  {e}^{ - 2x})\dfrac{d}{dx} ({e}^{2x} + {e}^{ - 2x}) - ({e}^{2x} + {e}^{ - 2x})\dfrac{d}{dx} ({e}^{2x}  -  {e}^{ - 2x})}{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt \: \dfrac{dy}{dx}  = \dfrac{({e}^{2x}  -  {e}^{ - 2x})(2{e}^{2x}  - 2 {e}^{ - 2x}) - ({e}^{2x} + {e}^{ - 2x})(2{e}^{2x} + 2{e}^{ - 2x})}{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt \:\dfrac{dy}{dx}  = \dfrac{2({e}^{2x}  -  {e}^{ - 2x})({e}^{2x}  -  {e}^{ - 2x}) -2 ({e}^{2x} + {e}^{ - 2x})({e}^{2x} + {e}^{ - 2x})}{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt \:\dfrac{dy}{dx}  = \dfrac{2 \bigg(({e}^{2x}  -  {e}^{ - 2x})({e}^{2x}  -  {e}^{ - 2x}) - ({e}^{2x} + {e}^{ - 2x})({e}^{2x} + {e}^{ - 2x}) \bigg)}{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt\implies \:\dfrac{dy}{dx}  = \dfrac{2 \bigg( {({e}^{2x}  -  {e}^{ - 2x})}^{2}  -  {({e}^{2x} + {e}^{ - 2x})}^{2} \bigg) }{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt\implies \:\dfrac{dy}{dx}  = \dfrac{ - 2 \bigg( {({e}^{2x}   +   {e}^{ - 2x})}^{2}  -  {({e}^{2x}  -  {e}^{ - 2x})}^{2} \bigg) }{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt\implies \:\dfrac{dy}{dx}  = \dfrac{ - 2(4 \times {e}^{2x}   \times  {e}^{ - 2x})}{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} }

\tt\implies \: \boxed{ \pink{ \bf \: \dfrac{dy}{dx}  = \dfrac{ - 8}{ {({e}^{2x}  -  {e}^{ - 2x})}^{2} } }}

Similar questions