Math, asked by nikhilpathania94, 9 months ago

differentiate e^x sinx + x^n cos x​

Answers

Answered by swarnalatasahoo40
1

Answer:

e^xsinx+x^ncosx

=e^xsinx.cosx+nx^n-1 cosx.-sinx

=e^xsinx.cosx-nx^n-1cosx.sinx

Answered by brokendreams
1

The differentiation is cosx(e^x + nx^{n-1}) + sinx(e^x - x^n)

Step-by-step explanation:

Given: The algebraic expression e^x sinx + x^n cos x

To Find: Differentiation of the given expression

Solution:

  • Differentiation of the expression e^x sinx + x^n cos x

We have the expression e^x sinx + x^n cos x such that its differentiation will be,

\Rightarrow \dfrac{d}{dx} (e^x sinx + x^n cos x)

\Rightarrow \dfrac{d}{dx} (e^x sinx) + \dfrac{d}{dx}(x^n cos x)

using the product rule for both terms, we have,

\Rightarrow sinx \dfrac{d(e^x)}{dx} +  e^x \dfrac{d(sinx)}{dx}+  cos x \dfrac{d(x^n)}{dx}  + x^n \dfrac{d(cos x)}{dx}

\Rightarrow sinx(e^x) + e^x (cosx) + cosx (nx^{n-1}) + x^n (-sinx)

Rearranging the above, you will get

\Rightarrow cosx(e^x + nx^{n-1}) + sinx(e^x - x^n)

Hence, the differentiation is cosx(e^x + nx^{n-1}) + sinx(e^x - x^n)

Similar questions