Math, asked by madhav5245, 8 days ago

Differentiate f(x) = | x - 2 | at x = 2​

Answers

Answered by manisha30nov
0

Answer:

0

Step-by-step explanation:

f(x) = x-2

(if x =2)

2f = 2-2

2f = 0

f = 0

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  |x - 2|  \\

We know, By definition of Modulus function, we have

\rm \: \begin{gathered}\begin{gathered}\bf\:  |x| =  \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ \\  &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So, using this definition,

\rm \: \begin{gathered}\begin{gathered}\bf\:  |x - 2| =  \begin{cases} &\sf{ - (x - 2) \:  \: when \: x  - 2< 0} \\ \\  &\sf{ \:  \: x - 2 \:  \: when \: x - 2 \geqslant 0} \end{cases}\end{gathered}\end{gathered}

\rm \: \begin{gathered}\begin{gathered}\bf\:  |x - 2| =  \begin{cases} &\sf{ - x + 2 \:  \: when \: x < 2} \\ \\  &\sf{ \:  \: x - 2 \:  \: when \: x \geqslant 2} \end{cases}\end{gathered}\end{gathered}

So,

\rm \: \begin{gathered}\begin{gathered}\bf\:  f(x) =  \begin{cases} &\sf{ - x + 2 \:  \: when \: x < 2} \\ \\  &\sf{ \:  \: x - 2 \:  \: when \: x \geqslant 2} \end{cases}\end{gathered}\end{gathered}

Now, to find derivative of f(x) = | x - 2 | at x = 2, we have to check the differentiability of function at x = 2.

Consider, Left Hand derivative

\rm \: \displaystyle\lim_{x \to 2^-}\rm  \frac{f(x) - f(2)}{x - 2}  \\

So, on substituting the values, we get

\rm \: =  \:  \displaystyle\lim_{x \to 2^-}\rm  \frac{ - x + 2 - 0}{x - 2}  \\

\rm \: =  \:  \displaystyle\lim_{x \to 2^-}\rm  \frac{ - x + 2}{x - 2}  \\

\rm \: =  \:  \displaystyle\lim_{x \to 2^-}\rm  \frac{ - (x  -  2)}{x - 2}  \\

\rm \: =  \: -  \: 1 \\

\rm\implies \:\boxed{\sf{  \:\displaystyle\lim_{x \to 2^ - }\rm  \frac{f(x) - f(2)}{x - 2} \:  =  \:  -  \: 1 \:  \: }} \\

Now, Consider Right Hand Derivative,

\rm \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{f(x) - f(2)}{x - 2}  \\

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{x - 2 - 0}{x - 2}  \\

\rm \:  =  \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{x - 2}{x - 2}  \\

\rm \: =  \:1 \\

\rm\implies \:\boxed{\sf{  \:\displaystyle\lim_{x \to 2^  +  }\rm  \frac{f(x) - f(2)}{x - 2} \:  =  \: 1 \:  \: }} \\

So, from above steps, we concluded that

\rm \: \displaystyle\lim_{x \to 2^ + }\rm  \frac{f(x) - f(2)}{x - 2} \:  \ne \: \displaystyle\lim_{x \to 2^ - }\rm  \frac{f(x) - f(2)}{x - 2} \\

\rm\implies \:f(x) \: is \: not \: differentiable \: at \: x \:  =  \: 2 \\

\rule{190pt}{2pt}

Concept Used :- Differentiability

A function f(x) is said to be differentiable at x = a, iff

\rm \:\boxed{\sf{  \: \:  \displaystyle\lim_{x \to a^ + }\rm  \frac{f(x) - f(a)}{x - a} \:  =  \: \displaystyle\lim_{x \to a^ -  }\rm  \frac{f(x) - f(a)}{x - a} \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions