Physics, asked by s1272diptishree13629, 3 months ago

Differentiate function with respect to x →

d/dx (2x+3)⁶​

Answers

Answered by HypersomniacAmbivert
15

Answer:

\Large{\bf{\purple{\mathfrak{\dag{ \underline{\underline {Question:-}}}}}}}

Differentiate function with respect to x →

 \dfrac{d( {2x + 3)}^{6} }{dx}

\Large{\bf{\green{\mathfrak{\dag{ \underline{\underline {Answer:-}}}}}}}

Given:-

  • y=(2x+3)⁶

To Find:-

  •  \dfrac{dy}{dx}

Solution:-

Let (2x+3) be equals to t

t=2x+3

=>(2x+3)⁶=t⁶

  • So We need to differentiate t⁶ with respect to x where t=2x+3

 =  >  \dfrac{d( {t}^{6}) }{dx}  \\  \\  =   \frac{d( {t}^{6}) }{dt}  \times  \frac{dt}{dx}

(Multiplying and dividing dt in equation)

 = (6)( {t}^{6 - 1} ) \times  \dfrac{dt}{dx}

(Since,  \frac{d {x}^{n} }{dx}  = n {x}^{n - 1} )

 = 6 {t}^{5}  \times  \dfrac{dt}{dx}  \\  = 6( {2x + 3})^{5}  \times  \frac{d(2x + 3)}{dx}

(Putting value of t=2x+3)

  = 6( {2x + 3})^{5}  \times  (2 \times 1)( {x}^{1 - 1} ) \\  = 6 \times 2 \times ( {2x + 3)}^{5}  \\  = 12 \times  ({2x + 3})^{5}

Therefore,Differentiating the function  \dfrac{d( {2x + 3)}^{6} }{dx} with respect to x

We get Solution as, 12(2x+3)⁵

{\bf{\pink{\dag{ \underline{\underline {ADDITIONAL\;INFORMATION:-}}}}}}

Basic Differentiation Formulae:-

  • y=constant,  =  >  \frac{dy}{dx}  = 0

  • y=xⁿ,  =>\frac{dy }{dx}  = n {x}^{n - 1}

  • y=sinx,  =>\frac{dy }{dx}  =cosx

  • y=cosx,  =>\frac{dy }{dx}  =(-sinx)

  • y=tanx,  =>\frac{dy }{dx}  =({ sec}^{2}x)

  • y=cotx, =  >  \frac{dy}{dx}  =  { - cosec}^{2} x

  • y =  {a}^{x}  =  >  \frac{dy}{dx}  =  {a}^{x}  ln(a)

  • y =  {e}^{x}  =  >  \frac{dy}{dx}  =  {e}^{x}

  • y =  ln(x )  =  >  \frac{dy}{dx}  =  \frac{1}{x}
Similar questions