Math, asked by valanyquadros, 9 months ago

differentiate Homogeneous differential equations dy/dx=y/x+tany/x

Answers

Answered by llxdevilgirlxll
2

 \bf \huge \: Answer

 \huge{ \sf{ \underline{ \pink{we \: have,}}}}

 \bf \frac{dy}{dx}  =   \tan( \frac{y}{x} )   \: +  \:  \frac{y}{x} ......(1)

This is clearly a Homogenous differential equation, as RHS is expressed only in terms of \bf\frac{y}{x}

 \huge{ \sf{ \underline{ \pink{To \:  Solve \:  this,}}}}

 \bf \: Let \:  \frac{y}{x}  \:  =  \: t \:

 \bf \:  \implies \: y \:  =  \: xt \:

 \bf \:  \implies   \:  \frac{dy}{dx}  =  \: t \:  +  \: x \frac {dt}{dx}

 \bf \: By (i)

 \bf \implies \:  tan \: t \:  =  x \frac{dt}{dx}

 \bf \implies  \: tan \: t \:  =  \:  x \frac{dt}{dx}

 \bf \implies \:  \frac{dx}{x}  =  \frac{dt}{tan \: t \: }

\huge{ \sf{ \underline{ \pink{Integrating  \:  both  \: sides}}}}

 \bf \implies \int \:  \frac{dx}{x}  \:  =   \: \int \: cot \: t \: dt \:

 \bf \implies \: log \: x \:  =  \: log \bigg(sin \: t \bigg) \:  +  \: log \: C

 \bf \implies \: log \: x \:  =  \: log  \:  \bigg( \: C \: sin \:  \frac{y}{x}  \bigg)

 \bf \implies \boxed { x\:  =  \: C \: sin \:  \bigg( \:  \frac{y}{x}  \bigg)}

This is the solution of given Differential equation, But it could be solved further to get y.

 \bf \implies \:  \frac{x}{C}  \:  =  \: sin \:  \bigg( \frac{y}{x}  \bigg)

 \bf \implies \: sin^{ - 1}  \bigg(Ax \bigg) \:  \frac{y}{x}   \: where \: A =  \frac{1}{C}

 \bf \implies \boxed{y \:  =  \: x \: sin^{ - 1}  \bigg(Ax \bigg)}

 \bf \: Hope  \: it's \:  helps :)

Similar questions