Math, asked by khushirana1723, 1 year ago

DIFFERENTIATE IT w.r.t x​

Attachments:

Answers

Answered by Anonymous
16

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given that,

 \sf{y = ( \sqrt{x}  -  \frac{1}{ \sqrt{x} }) {}^{2}  } \\

Of the form,

(a - b)² = a² - 2ab + b²

Now,

 \sf{y = ( \sqrt{x }){}^{2} \:  +  \: ( \frac{1}{ \sqrt{x} } ) {}^{2} \:   -  \:  2. \sqrt{x}. \frac{1}{ \sqrt{x} }     } \\  \\   \implies \:   \boxed{\sf{y = x \:  +  \:  \frac{1}{x} - 2 }}

Differentiating y w.r.t to x,we get:

 \sf{ \frac{dy}{dx}  = \frac{d(x +  \frac{1}{x} - 2 )}{dx}  } \\

Using Chain Rule,

 \implies \:  \sf{ \frac{dy}{dx} =  \frac{d(x)}{dx} \:  +  \:  \frac{d(x {}^{ - 1}) }{dx}    +   \frac{d( - 2)}{dx}  } \\  \\  \implies \: \:   \boxed{\sf{ \frac{dy}{dx} = 1 - x {}^{ - 2}  }}

Answered by DhanyaDA
2

Given:

\sf y={(\sqrt{x}-\dfrac{1}{\sqrt{x}})}^2

To find:

 \longrightarrow \:  \sf \:  \dfrac{dy}{dx}

Explanation:

 \longrightarrow \:  \sf  y={(\sqrt{x}-\dfrac{1}{\sqrt{x}})}^2 \:

let us expand it using the formula

\boxed{\tt (a-b)^2=a^2+b^2-2ab}

 \longrightarrow \:  \sf \: y = x +  \dfrac{1}{x}  - 2

Now,

Differentiating y with respect to x

 \longrightarrow \:  \sf \dfrac{dy}{dx}  =  \dfrac{dx}{dx}  +  \dfrac{d}{dx} ( \dfrac{1}{x} ) - 0

Differentiation of constant=0

\boxed{\sf \dfrac{d}{dx}(\dfrac{1}{x})=\dfrac{-1}{x^2}}

 \longrightarrow \:  \sf \dfrac{dy}{dx}  =1 + ( \dfrac{ - 1}{ {x}^{2} }) - 0 \\  \\   \longrightarrow \:  \sf \dfrac{dy}{dx}  =1 -  \dfrac{1}{ {x}^{2} }  \\  \\  \longrightarrow \:   \boxed{\sf \dfrac{dy}{dx}  = \dfrac{ {x}^{2}  - 1}{ {x}^{2} } }

Similar questions