differentiate it w.r.t x
Answers
Question:-
Differenitaiate:-{(a+x)^1/2 -(a-x)^1/2}/{(a+x)^1/2 +(a-x)^1/2}
solution:-
First rationalize the term....and make it simple..
multiplying numerator and denominator by (a+x)^1/2 -(a-x)^1/2
we get
{(a+x)^1/2 -(a-x)^1/2}{(a+x)^1/2 -(a-x)^1/2}/{(a+x)^1/2 +(a-x)^1/2}{(a+x)^1/2 -(a-x)^1/2}
{(a+x)^1/2 -(a-x)^1/2}^2/{(a+x-a+x)
{(a+x+a-x-2×(a+x)^1/2 ×(a-x)^1/2}/2x
{(2a-2(a+x)^1/2 ×(a-x)^1/2}/2x
{a-(a+x)^1/2×(a-x)^1/2}/x
{a-{a^2-x^2}^1/2}/x
let,y={a-(a^2-x^2)^1/2}/x......i)
now,use the quotient rule of differenitaiation
dy/dx=[{0-(0-2x)×1/2 (a^2-x^2)^-1/2 - 1×{a-(a^2-x^2)^1/2}]/x^2
=>[{x^2/(a^2-x^2)^-1/2} -{a-(a^2-x^2)^1/2}]/x^2
=>[x^2-a(a^2-x^2)^1/2 +a^2-x^2}]/x^2(a^2-x^2)^1/2
=>[a^2-a(a^2-x^2)^1/2]/(x^2(a^2-x^2)^1/2)
=>[a{a-(a^2-x^2)^1/2}/{x^2(a^2-x^2)^1/2}]
=>from first equation put y
=>a.y/{x(a^2-x^2)^1/2)
so,
dy/dx =a×y/(x(a^2-x^2)^1/2)
{hope it helps}
Answer:
Go to google udhar aapko answer milega is question ka bhot bda answer h
Follow me
And, also mark me as brainlist. Please, please