Math, asked by khushbookumari43, 3 months ago

differentiate it.
x logx/e^x

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

y =  \frac{x log(x) }{ {e}^{x} }  \\

Differentiating both sides, we have,

 \frac{dy}{dx}  =  \frac{ {e}^{x}.  \frac{d}{dx} (x log(x))  - (x log(x) ) \frac{d}{dx} ( {e}^{x} )}{ { ({e}^{x}) }^{2} }  \\

 \implies \frac{dy}{dx}  =  \frac{ {e}^{x} ( log(x) + 1) -  {e}^{x}  .x log(x) }{ {e}^{2x} }  \\

 \implies \frac{dy}{dx}   =  \frac{ {e}^{x}(x log(x)  +  log(x)   + 1)}{ {e}^{2x} }  \\

 \implies \frac{dy}{dx}  =  {e}^{ - x} ((x + 1) log(x)  + 1) \\

Similar questions