Math, asked by riya8674, 11 months ago

differentiate krna h.......n


no spam....fyda ni hoga... i will report.....

jldi se ans dedo yrrr.....​

Attachments:

Answers

Answered by Anonymous
10

Answer:

\large\boxed{\sf{(\frac{b}{a},t=\frac{\pi}{4})\:\:(0,t=\frac{\pi}{3})}}

Step-by-step explanation:

It's being given that,

 \sf{x = a \sin2t(1 +  \cos2t)}  \\  \\   \sf{=  > x = a \sin2t + a \sin(2t)  \cos(2t)  \times  \frac{2}{2} } \\  \\   \sf{=  > x = a \sin(2t)  +  \frac{a}{2}  \sin(4t) } \\  \\ \sf{  =  >  \frac{dx}{dt}  = a \cos(2t) \times 2  +  \frac{a}{2}  \cos(4t)  \times 4 }\\  \\   \sf{=  >  \frac{dx}{dt}  = 2a \cos(2t)  + 2a \cos(4t)  \:  \:  \:  \:  \:  \:  \: ............(1)}

Also, it's being given that,

 \sf{y = b \cos2t(1 -  \cos2t)}  \\  \\   \sf{=  > y = b \cos2t  - b { \cos }^{2} 2t} \\  \\  \sf{ =  >  \frac{dy}{dt}  = b( -  \sin2t)  \times 2 - b(2 \cos2t) ( -  \sin2t)  \times 2} \\  \\ \sf{  =  >  \frac{dy}{dt}  = 2b \sin(4t)  - 2b \sin(2t)   \:  \:  \:  \:  \: ...........(2)}

From \sf{(1)} and \sf{(2)},

  \sf{=  >  \dfrac{dy}{dx}  =  \dfrac{ \frac{dy}{dt} }{ \frac{dx}{dt} } } \\  \\   \sf{ =  >  \frac{dy}{dx}   =   \frac{2b \sin(4t) - 2b \sin(2t)  }{2a \cos(2t)  + 2a \cos(4t) }}  \\  \\  \sf{ =  >  \frac{dy}{dx}  =  \frac{b \sin(4t) - b \sin(2t)  }{a \cos(2t)   + a \cos(4t) } }

Now, when t = π/4

  \sf{=  >  \frac{dy}{dx}  =  \frac{b \sin(\pi) - b \sin( \frac{\pi}{2} )  }{a \cos( \frac{\pi}{2} ) + a \cos(\pi)  }  }\\  \\   \sf{=  >  \frac{dy}{dx}  =  \frac{ - b}{ - a}  =  \frac{b}{a}  \:  \:  \:  \:  \:  \:  \:  \: (t =  \frac{\pi}{4} )}

Now, when t = π/3

  \sf{=  >  \dfrac{dy}{dx}  =  \dfrac{b \sin( \frac{4\pi}{3} ) - b  \sin( \frac{2\pi}{3} )   }{a \cos( \frac{2\pi}{3} ) + a \cos( \frac{4\pi}{3} )  } } \\  \\ \sf{  =  >  \dfrac{dy}{dx}  =  \dfrac{ -  \frac{ \sqrt{3} b}{2}  +  \frac{ \sqrt{3}b }{2}  }{a \cos( \frac{2\pi}{3} ) + a \cos( \frac{4\pi}{3} )  }  }\\  \\   \sf{=  >  \frac{dy}{dx}  =  \frac{0}{a \cos( \frac{2\pi}{3} ) + a \cos( \frac{4\pi}{3} )  } } \\  \\  \sf{  =  >  \frac{dy}{dx}  = 0 \:  \:  \:  \:  \:  \:  \:  \: (t =  \frac{\pi}{3} )}

Answered by Anonymous
1

Answer:

Oyeee jb free hona to come to my ques....!!!

Similar questions