Math, asked by bankarmahendra97, 1 year ago

differentiate log (1+x2) with respect to cot-1 x​

Answers

Answered by Anonymous
1

 \huge \bf{ \red{ \underline{Answer}}} \\  =   \bf{- 2x }\\  \\ \bf{ \underline  { step \: by \: step \: solution}} \\  \\ let  \\ \bf{y  = log \: (1 +  {x}^{2} )} \\  \\  \bf{and \: } \\  \bf{z =  {cot}^{ - 1} x} \\   \\  \\ \red{  \bf{find \:} } -  \bf{differentiate \: to \:  y\: with \: respect \: } \\  \\ \bf{ to \: z} \\  \huge \: \bf{ solution \: } \\  \\  \bf{we \: have \: } \\  \bf{y = log(1 +  {x}^{2} )} \\  \bf{differentiating \: with \: respect \: to \: x \: } \\  \\   \bf{\frac{dy}{dx}  =  \frac{1}{1 +  {x}^{2} }  \times 2x} \\  \\  \bf{now \: we \: have \: } \\  \bf{z }=  {cot}^{ - 1} x \\  \bf{differentiating \: with \: respect \: to \: x \: } \\   \\   \bf{\frac{dz}{ dx}  =  \frac{ - 1}{1 +  {x}^{2} } } \\  \\  \bf{now }\:  \\  \bf{we \: have \: to \: find} \:  \\  \\   \bf{\frac{dy}{dz}  =  \frac{ \frac{dy}{dx} }{ \frac{dz}{dx} } } \\   \\  \bf{ \frac{dy}{dz}  =  \frac{ 2x}{1 +  {x}^{2} } \times  \frac{1 +  {x}^{2} }{ - 1}}  \\  \\   \bf{\frac{dy}{dz}  =  - 2x} \\  \\  \bf{this \: is \: the \: required \: solution}

Similar questions