Differentiate log cos x from first principal . plz provide full solution !
Answers
Answered by
2
log cos x first principal
Start with:
y=ln(cosx)
For ease of reading, rewrite as:
ey=cosx
Hence
ey+Δy=cos(x+Δx)
Apply the angle-addition trigonometric identity cos(a+b)=cosacosb−sinasinb:
ey+Δy=cosxcosΔx−sinxsinΔx
Thus:
ey+Δy−ey=cosxcosΔx−sinxsinΔx−cosx
Factorize:
ey(eΔy−1)=cosx(cosΔx−1)−<
Start with:
y=ln(cosx)
For ease of reading, rewrite as:
ey=cosx
Hence
ey+Δy=cos(x+Δx)
Apply the angle-addition trigonometric identity cos(a+b)=cosacosb−sinasinb:
ey+Δy=cosxcosΔx−sinxsinΔx
Thus:
ey+Δy−ey=cosxcosΔx−sinxsinΔx−cosx
Factorize:
ey(eΔy−1)=cosx(cosΔx−1)−<
Similar questions