Math, asked by chandankumar675, 9 months ago

Differentiate log (cosec x + cot x)

Answers

Answered by raj29582
7

HELLO friend......... HERE'S your ANSWER.....

Step-by-step explanation:

Derivative of cosec x + cot x is=-cosec\,x\:(cot\,x-cosec\,x)=−cosecx(cotx−cosecx)

Step-by-step explanation:

Given function = cosec x + cot x

We have to find derivative if the function.

\frac{\mathrm{d}(cosec\,x+cot\,x)}{\mathrm{d} x}

dx

d(cosecx+cotx)

=\frac{\mathrm{d}(cosec\,x)}{\mathrm{d} x}+\frac{\mathrm{d}(cot\,x)}{\mathrm{d} x}=

dx

d(cosecx)

+

dx

d(cotx)

=-cosec\,x\:cot\,x+(-cosec^2\,x)=−cosecxcotx+(−cosec

2

x)

=-cosec\,x\:cot\,x-cosec^2\,x=−cosecxcotx−cosec

2

x

=-cosec\,x\:(cot\,x-cosec\,x)=−cosecx(cotx−cosecx)

Therefore, Derivative of cosec x + cot x is =-cosec\,x\:(cot\,x-cosec\,x)=−cosecx(cotx−cosecx)

HOPE it HELPED you......

PLEASE mark MY answer AS the BRAINLIEST answer

Answered by sandy1816
0

let \:  \:  \:  \:  \: y = log(cosecx + cotx) \\  \\  \frac{dy}{dx}  =  \frac{1}{cosecx + cotx}  \frac{d}{dx} (cosecx + cotx) \\  \\  \frac{dy}{dx}  =  \frac{1}{cosecx + cotx} ( - cosecxcotx -  {cosec}^{2} x) \\  \\  \frac{dy}{dx}  =   \frac{ - cosecx(cotx + cosecx)}{cosecx + cotx}  \\  \\  \frac{dy}{dx}  =  - cosecx

Similar questions