Math, asked by smdyaseen6650, 8 months ago

Differentiate log(sin(x^2+4)) with respect to x.

Answers

Answered by shadowsabers03
4

Given function,

\longrightarrow f(x)=\log(\sin(x^2+4)

Its derivative wrt x will be,

\longrightarrow f'(x)=\dfrac{d[\log(\sin(x^2+4)]}{dx}

By chain rule,

\longrightarrow f'(x)=\dfrac{d[\log(\sin(x^2+4))]}{d[\sin(x^2+4)]}\cdot\dfrac{d[\sin(x^2+4)]}{d[x^2+4]}\cdot\dfrac{d[x^2+4]}{dx}

We have,

  • \dfrac{d}{dx}[\log x]=\dfrac{1}{x}
  • \dfrac{d}{dx}[\sin x]=\cos x
  • \dfrac{d}{dx}[x^2]=2x

Then,

\longrightarrow f'(x)=\dfrac{1}{\sin(x^2+4)}\cdot\cos(x^2+4)\cdot2x

\longrightarrow\underline{\underline{f'(x)=2x\cot(x^2+4)}}

Similar questions