Math, asked by sarikathakur8298, 2 months ago

differentiate log sinx/2​

Answers

Answered by shreemanlegendlive
3

Question :

Differentiate \tt log(sin\frac{x}{2})

Solution :

Let y = \tt log(sin\frac{x}{2})

Differentiating w.r.t x

 \tt \implies \frac{dy}{dx} = \frac{d(log(sin\frac{x}{2})}{dx}

 \tt \implies \frac{dy}{dx} = \frac{1}{sin\frac{x}{2}} \frac{d(sin\frac{x}{2})}{dx}

 \tt \implies \frac{dy}{dx} = \frac{cos\frac{x}{2}}{sin\frac{x}{2}} \frac{d(\frac{x}{2})}{dx}

 \tt \implies \frac{dy}{dx} = cot\frac{x}{2} \frac{1}{2}

 \tt \implies \frac{dy}{dx} = \frac{1}{2}cot\frac{x}{2}

Formulas in Differentiation :

 \tt \frac{d({x}^{n})}{dx} = n{x}^{n-1}

 \tt \frac{d(logx)}{dx} = \frac{1}{x}

 \tt \frac{d({e}^{x})}{dx} = {e}^{x}

 \tt \frac{d(sinx)}{dx} = cosx

 \tt \frac{d(cosx)}{dx} = -sinx

 \tt \frac{d(tanx)}{dx} = {sec}^{2}x

 \tt \frac{d(cotx)}{dx} = {cosec}^{2}x

 \tt \frac{d(secx)}{dx} = secx.tanx

 \tt \frac{d(cosecx)}{dx} = - cosecx.cotx

Answered by Anonymous
1

Answer:-

Let y=

(log( sinx)) ^{2}

 =  >  \frac{dy}{dx}  = 2 log( sinx). \frac{d}{dx} (log(sinx)

 = >  2log(sinx) \times  \frac{1}{sin}  \times  \frac{d}{dx} (sinx)

 =  > 2log(sinx) \times  \frac{1}{sinx}  \times cosx

 =  >  \frac{2cos \: log(sinx)}{sinx}

Similar questions