differentiate
log(sinx) w.r.t cotx
Answers
Answered by
20
Step-by-step explanation:
let us consider ,
U = log(sinx)
v = cotx
so,
du/dv= (du/dx )/ ( dv / dx)
✔so first differentiate U = log(sinx)
wrt x
du/dx = d/dx (log ( sinx) )
= (1 / sinx ) cosx
=( cosx / sinx)
✔Now, differentiate
v = cotx
dv / dx = - cosec^2 x
therefor
✔ du/dv= (du/dx )/ ( dv / dx)
= (( cosx / sinx) ) /(- cosec^2 x)
= ( cos x / - (sinx. cosec^2 x))
= ( - ( sin^2x . cosx) / sinx))
= - sinx. cosx
aakashchandra2002:
tqs
Similar questions