Differentiate (log x)x + x log x w.r.t. x
please explain step by step
Answers
Answered by
0
Step-by-step explanation:
y=(logx)
x
+x
logx
Let y=a+b
dx
dy
=?
a=(logx)
x
⇒loga=xlogx⇒
a
1
dx
da
=logx+
x
x
=1+lnx
⇒
dx
da
=a(1+lnx)=(logx)
x
(1+lnx)
b=x
logx
logb=(logx).x
b
1
.
dx
db
=
x
1
.x+logx
dx
db
=b(1+logx)=x
logx
(1+logx)
dx
dy
=
dx
da
+
dx
db
=(logx)
x
(1+logx)+x
logx
(1+logx)=(1+logx)((logx)
x
+x
logx
)
dx
dy
=(1+logx)y
Similar questions