differentiate of tan^2 2x
Answers
Answered by
1
Explanation:
y=tan2(2x)
First, remember the convention for trigonometric functions:
y=tan2(2x)=(tan(2x))2
So the outermost function is the square. Use the power and chain rules to get:
dydx=2(tan(2x))⋅ddx(tan(2x))
=2tan(2x)⋅sec2(2x)⋅ddx(2x)
=2tan(2x)⋅sec2(2x)⋅(2)
=4tan(2x)sec2(2x)
y=tan2(2x)
First, remember the convention for trigonometric functions:
y=tan2(2x)=(tan(2x))2
So the outermost function is the square. Use the power and chain rules to get:
dydx=2(tan(2x))⋅ddx(tan(2x))
=2tan(2x)⋅sec2(2x)⋅ddx(2x)
=2tan(2x)⋅sec2(2x)⋅(2)
=4tan(2x)sec2(2x)
Similar questions